Cdmtcs Research Report Series Chaitin Numbers and Strong Reducibilities

نویسندگان

  • Cristian S. Calude
  • André Nies
چکیده

We prove that any Chaitin Ω number (i.e., the halting probability of a universal self-delimiting Turing machine) is wtt-complete, but not tt-complete. In this way we obtain a whole class of natural examples of wtt-complete but not tt-complete r.e. sets. The proof is direct and elementary.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chaitin Numbers and Strong Reducibilities

We prove that any Chaitin number (i.e., the halting probability of a universal self-delimiting Turing machine) is wtt-complete, but not tt-complete. In this way we obtain a whole class of natural examples of wtt-complete but not tt-complete r.e. sets. The proof is direct and elementary.

متن کامل

Cdmtcs Research Report Series on Hypersimple Sets and Chaitin Complexity on Hypersimple Sets and Chaitin Complexity

In this paper we study some computability theoretic properties of two notions of randomness for nite strings: randomness based on the blank-endmarker complexity measure and Chaitin randomness based on the self-delimiting complexity measure. For example, we nd the position of RAND and RAND at the same level in the scale of immunity notions by proving that both of them are not hyperimmune sets. A...

متن کامل

CDMTCS Research Report Series To a Mathematical Theory of Evolution and Biological Creativity

We present an information-theoretic analysis of Darwin’s theory of evolution, modeled as a hill-climbing algorithm on a fitness landscape. Our space of possible organisms consists of computer programs, which are subjected to random mutations. We study the random walk of increasing fitness made by a single mutating organism. In two different models we are able to show that evolution will occur a...

متن کامل

CDMTCS Research Report Series Another Example of Higher Order Randomness

We consider the notion of randomness relative to an oracle: a real number is random in A if and only if its initial segments are algorithmically incompressible in a self-delimiting universal machine equipped with an oracle A. We prove that the probability that a program for infinite computations outputs a cofinite set is random in the second jump of the halting problem.

متن کامل

Cdmtcs Research Report Series Recursively Enumerable Reals and Chaitin Numbers Recursively Enumerable Reals and Chaitin Numbers

A real is called recursively enumerable if it can be approximated by an increasing, recursive sequence of rationals. The halting probability of a universal selfdelimiting Turing machine (Chaitin's number, [10]) is a random r.e. real. Solovay's [25] -like reals are also random r.e. reals. Solovay showed that any Chaitin number is -like. In this paper we show that the converse implication is true...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997